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Recent papers have shown that there are different coherent and partially coherent fields that may have
identical intensity distributions throughout space. On the other hand, the well-known transport-of-intensity
equation allows the phase of a coherent field to be recovered from intensity measurements, and the solution is
widely held to be unique. A discussion is given on the recovery of the structure of both coherent and partially
coherent fields from intensity measurements, and we reconcile the uniqueness question by showing that
the transport-of-intensity equation has a unique solution for the phase only if the intensity distribution has
no zeros.
1. INTRODUCTION
In the past ten years there has been considerable interest
in the determination of phase or coherence properties of
light from measurements of its intensity distribution.1 – 4

The coherent phase recovery is of most direct interest in
the field of adaptive optics,5,6 whereas the recovery of the
coherence properties of partially coherent radiation7 – 9 is
of importance in microscopy and atom optics, where it
is often inevitable or desirable that fields are partially
coherent.

Of particular importance is the work of Teague,1,2

who showed that two displaced intensity measurements
should allow the phase of a coherent wave to be de-
termined with the so-called transport-of-intensity equa-
tion. Recently, Gori et al.10 have presented an example
demonstrating that it is possible for distinct coherent
wave fields to have identical three-dimensional inten-
sity distributions. It follows that linear combinations
of these waves will have identical three-dimensional in-
tensity distributions but different coherence properties.
The example found by Gori et al. raises important ques-
tions concerning the uniqueness of the solutions of the
transport-of-intensity equation. In particular, Teague
claimed to have proved that the transport-of-intensity
equation has a unique solution for the phase distribution.
A major aim of the present paper is to reconcile these
two results.

In Section 2 of this paper we use the well-known trans-
port equations for generalized radiance11 to derive the
transport of intensity for light with arbitrary coherence
and use this to show that the solutions to this equation
will not be unique. We then specialize the result to ob-
tain the coherent transport-of-intensity equation first pre-
sented by Teague. We believe that the physical picture
corresponding to this formalism allows some insight into
the nature of the phase problem, and we exploit this pic-
ture throughout this paper.

In Section 3 we discuss issues concerning the unique-
ness of the solutions to the transport-of-intensity equa-
tion in order to examine the apparent contradiction
between the work of Gori et al. and the work of Teague.
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We show that the resolution lies in the fact that the
examples of Gori et al. contain points of zero intensity,
where the phase is not defined and the intensity trans-
port equation is not valid. The presence of zero-intensity
points leads to the branching of the phase and the ap-
pearance of different phase solutions corresponding to an
identical intensity distribution.

2. GENERALIZED RADIANCE AND
TRANSPORT OF INTENSITY

A. Partially Coherent Transport-of-Intensity Equation
Consider partially coherent quasi-monochromatic light
described by the mutual optical intensity function
Jsr1, r2d. We introduce the variables

r ; 1y2sr1 1 r2d, x ; sr1 2 r2d , (1)

where r1 and r2 are contained in the plane perpendicu-
lar to the optic axis. Distance along the optic axis is de-
noted by z. The generalized radiance (GR)11 is defined
by means of a Fourier transform over the x variable:

Bsr, u, zd ­
1
l2

Z
Jsr, x, zdexps22pix ? uylddx . (2)

If we substitute this back into the paraxial propagation
expressions for the mutual optical intensity function,12

then we find the following very simple geometric propa-
gation expression for the GR:

Bsr, u, zd ­ Bsr 2 zu, u, 0d . (3)

The intensity is obtained by integration over u:

I sr, zd ­
Z

Bsr, u, zddu . (4)

Careful inspection of these equations leads to the conclu-
sion that they are precisely identical to those describing
geometric optics if Bsr, u, zd is interpreted as describing
the distribution of energy flow as a function of position
r and direction u. The vector u is then interpreted as
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Fig. 1. Propagation geometry that suggests a simple ray inter-
pretation of the generalized radiance. As noted in the text, this
interpretation is subject to some important limitations.

the projection of the unit vector specifying the direction of
propagation of the ray at the location r onto the plane per-
pendicular to the optic axis (see Fig. 1). Although this in-
terpretation is intuitively appealing, it must be tempered
by the recognition that, although Bsr, u, zd is real, it may
sometimes be negative. The negativity of Bsr, u, zd pre-
vents its unambiguous interpretation as a description of
energy flow. In the short-wavelength limit, B is real and
positive,13 and the interpretation of B as energy flow then
appears unambiguous and appropriate.

With these results we see that the intensity at some
plane a distance z from the z ­ 0 plane is given by

I sr, zd ­
Z

Bsr 2 zu, u, 0ddu . (5)

Thus the rate of change of intensity along z is given by

≠I
≠z

­
≠

≠z

Z
Bsr 2 zu, u, 0ddu . (6)

If we define the plane of interest to be the z ­ 0 plane,
then we find that

≠I
≠z

­ 2=r ?
Z

uBsr, u, 0ddu , (7)

where =r ­ s≠y≠xdi 1 s≠y≠ydj is the two-dimensional gra-
dient operator. Equation (7) is a simple extension of
transport equations for the Wigner distribution that have
been published elsewhere11 and may be regarded as the
transport-of-intensity equation for a paraxial partially co-
herent field. Since Bsr, u, zd is the phase-space density
function for paraxial optics, Eq. (7) follows directly from
the conservation of phase-space density as expressed by
Liouville’s theorem.

It is easy to show that Eq. (7) may have nonunique
solutions for Bsr, u, 0d. Any field that has the symmetry
Bsr, u, 0d ­ Bsr, 2u, 0d will result in the integral on the
right-hand side of Eq. (7) vanishing, with the result that

≠I
≠z

­ 0 . (8)

There are many partially coherent optical fields that may
have this property. Any solution to Eq. (7) may have
such a symmetric function added to it and still be a valid
solution. Thus we conclude that it will not be possible to
reconstruct unambiguously a partially coherent field from
measurements of its intensity distribution and its first
derivative by means of the partially coherent transport-
of-intensity equation.
B. Coherent Transport-of-Intensity Equation
Let us now turn to coherent waves. In what follows we
obtain the familiar coherent transport-of-intensity equa-
tion as a special case of Eq. (7). This derivation is more
complex than the derivation presented by Teague, but it
does, however, allow a clear physical interpretation to
be drawn about the nature of phase retrieval with this
approach.

In the limit of a coherent wave the mutual optical
intensity function may be written as

Jsr, x, zd ­ csr 1 xy2, zdcpsr 2 xy2, zd , (9)

where csrd is the complex field of the coherent wave. We
wish to find the GR corresponding to this field in the
paraxial limit. Let us write

csr, zd ­ Asr, zdexpf2pifsr, zdg , (10)

where Asr, zd ;
p

I sr, zd. We substitute this into Eq. (9)
and then into the definition of the GR to obtain

Bcohsr, u, zd ­
1
l2

Z
Asr 1 xy2, zdAsr 2 xy2, zd

3 exph2piffsr 1 xy2, zd

2 fsr 2 xy2, zdgj exps22pix ? uylddx .

(11)

Let us now Taylor-expand the term in the first exponent
and assume that the phase f varies sufficiently slowly
with x that terms of order =r

3fsr, zd can be ignored.
This term then reduces to

fsr 1 xy2, zd 2 fsr 2 xy2, zd ø x ? =rfsr, zd . (12)

Note that the assumption leading to this result is
also implicit in the paraxial approximation that we
adopted above.

If we define

Basr, u, 0d ;
1
l2

Z
Asr 1 xy2, 0dAsr 2 xy2, 0d

3 exps22pix ? uylddx , (13)

then Basr, u, 0d is the GR corresponding only to the am-
plitude distribution across the plane at z ­ 0. We now
apply the convolution theorem to Eq. (11) to find that
the GR corresponding to a general coherent wave in the
paraxial approximation is described by

Bsr, u, 0d ­ Bafr, u0 2 l=rfsr, 0dg , (14)

so that

≠I
≠z

­ 2=r ?
Z

uBafr, u 2 l=rfsr, 0dgdu , (15)

which may be written as

≠I
≠z

­ 2=r ?
Z

fu0 1 l=rfsr, 0dgBasr, u0, 0ddu0 . (16)
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It is easily shown that I sr, 0d ­
R

Basr, u0, 0ddu0, so, if we
separate out the term involving l=rfsr, 0d and perform
the integral over u0, we find that

≠I
≠z

­ 2=r ? fl=rfsr, 0dI sr, 0d 1
Z

u0Basr, u0, 0ddu0g .

(17)
Given that Basr, u0, 0d is expressed in Eq. (13) as a
Fourier transform of a real and even quantity, we de-
duce that Basr, u0, 0d ­ Basr, 2u0, 0d. This implies that
the second term in Eq. (17) vanishes, so that we obtain

≠I
≠z

­ 2=r ? fl=rfsr, 0dI sr, 0dg , (18)

which is Teague’s transport-of-intensity expression.
This expression is analogous to differential expressions
for the continuity equations in fluid dynamics and elec-
trodynamics. The fluid analogy is emphasized if we
note that l=rfsr, 0d is the phase velocity vector for the
wave field.

From this vantage point we see that the symmetry that
prevents the unambiguous determination of partially co-
herent fields results in a simplification of the transport-of-
intensity equation. However, the remaining phase term
cannot show this symmetry unless f ­ constant, which is,
of course, also a unique solution. Thus, in the coherent
case, there remains the prospect of a unique solution.

3. UNIQUENESS OF THE RECONSTRUCTED
PHASE OF COHERENT FIELDS
In this section we examine the question of uniqueness of
the phase reconstructed from the transport-of-intensity
equation. We show that if the intensity is everywhere
nonzero, then the phase will be uniquely defined, to
within an additive constant. The proofs of uniqueness,
however, are not valid in the case in which the wave
field contains points of zero intensity, and the example
of Ref. 10 presents a case in which the many solutions for
the phase can exist for a given three-dimensional inten-
sity distribution.

Let us begin by recalling the definition of phase. From
Eq. (10) we can write

fsr, zd ­
1

2p
argfcsx, ydg ­

1
2pi

,n

"
csr, zd
Asr, zd

#
. (19)

Note that the phase is well defined in the case in which
the amplitude of the wave is strictly positive and that, as
has been described elsewhere, points of zero intensity are
the branching points of the phase.14 In Subsection 3.A
we review the proofs of the uniqueness of the solutions for
the phase to the relevant Dirichlet and Neuman problems
and show that these proofs are valid only in the case in
which the intensity is everywhere strictly positive.

In Subsection 3.B we examine the case in which the
wave field is described by an analytic function, and we
find the nonunique solutions of the transport-of-intensity
equations for a harmonic phase function in the case in
which the intensity is a circularly symmetric function.
Interestingly, these turn out to be the solutions obtained
by Gori et al. and are the only solutions to the transport-
of-intensity equation that are circularly symmetric with a
point of zero intensity on axis. Finally, in Subsection 3.C
we present a physical picture for the nonunique phase
solutions based on the GR picture of wave fields.
A. Uniqueness Proofs for the
Transport-of-Intensity Equation
We now review the uniqueness proofs that exist for the
transport-of-intensity equation. To do this, we first set
up some mathematical preliminaries.

Let V be a simply connected bounded domain in two-
dimensional sx, yd space with a smooth (infinitely dif-
ferentiable) boundary G. By simply connected we mean
that V contains no holes. Consider a partial differential
operator L defined by

L ; 2=r ? sI=rd (20)

in V involving a smooth function I ­ I sx, yd satisfying

I sx, yd . 0 ;sx, yd [ V . (21)

With these definitions we may write the transport-of-
intensity Eq. (18) in the form

Lw ­ f , (22)

where f ; s1ylds≠Iy≠zd. Given this formulation, we may
use a classic result of the theory of elliptic partial dif-
ferential equations,15 which states that, for any smooth
functions f in V and g on the boundary G, there exists
a unique smooth solution f to the Dirichlet problem for
the operator L in the domain V:

Lf ­ f , fjG ­ g . (23)

Hence, with a specified boundary condition, we may find
a unique solution to the transport-of-intensity equation
provided that the intensity distribution is strictly positive.

In some cases it is more convenient to consider what
is known as the Neuman problem.5 In this case we let
the domain V and the functions I sx, yd, f sx, yd, and g be
the same as those above. Then a smooth solution to the
Neuman problem,

Lf ­ f , I≠nfjG ­ g (24)

(here ≠nf ­ n ? =rf is the derivative in the direction
normal to the boundary), exists if and only if the following
condition holds:Z

V

f sx, yddxdy 1
Z

G

gssdds ­ 0 . (25)

If we substitute for f and g, Eq. (25) becomes

1
l

≠

≠z

Z
V

I sx, yddxdy ­ 2
Z

G

I≠nw ds , (26)

which is just an expression of conservation of energy; loss
of intensity in a region arises through energy flow across
the boundary of the region. If condition (25) is satisfied,
the solution f here is unique up to an arbitrary constant.

As foreshadowed, these uniqueness theorems rely on
the intensity being strictly positive and the function
fsx, yd being a smooth single-valued function over the
region V. A function, f, representing phase, however,
need not be smooth and single valued, and the wave field
can contain points of zero intensity. An example of this
is presented in Subsection 3.B.
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Fig. 2. Phase function 2pf ­ mu plotted as a function of x and
y for m ­ 2.

B. Class of Nonunique Solutions
Consider the examples of Ref. 10, which have identi-
cal three-dimensional intensity distributions but differ-
ent phases. Hence no method exists that would allow
unique phase reconstruction from any kind of intensity
measurement in free space. The wave fields cmsr, u, zd
are the results of the Fresnel propagation of the initial
distributions:

cmsr, u, 0d ­ I0
1/2srdexpsi2pfnd , (27)

where

2pwm ­ mu (28)

and m is an integer. This phase function is plotted as
a function of u for m ­ 12 in Fig. 2 and exhibits a heli-
cal form. Equation (28) is the well-known single vortex
solution of the paraxial wave equation.

As described in Ref. 10, cmsr ­ 0, u, zd ­ 0 for all values
of u and z and, according to Eq. (19), there is a phase
singularity at r ­ 0. Singularities of the type described
above are the subject of a great deal of interest, and the
phase singularity at r ­ 0 is said to have a topological
charge of m.16,17

Note that the phases given in Eq. (28) are harmonic
functions; i.e., they satisfy Df ­ =r

2f ­ 0. The class of
wave fields possessing harmonic phase functions includes,
for example, cases in which the wave field is everywhere
nonzero and an analytic function of z ­ x 1 iy.

Demonstrating uniqueness to within a constant is
equivalent to showing that the only solutions to the
corresponding uniform problems with f or g zero are
f ­ constant. In this case the transport-of-intensity
equation becomes Lf ­ 0 and can be written explicitly
in the form

2=r ? sI=rfd ­ 2IDf 2 =rf ? =rI ­ 0 . (29)

For harmonic phase functions this reduces to

=rf ? =rI ­ 0 . (30)

If I is circularly symmetric and =rI fi 0, then =rI will be
radial and =rf must be azimuthal. Hence the nontrivial
solutions of this equation will be those for which f is
dependent only on u.
In this case, then, we conclude that

f00sud ­ 0 , (31)

and so the only solutions are

2pfsud ­ au 1 b , (32)

where a and b are constants. For continuity of the wave
field we require that

2pfsud ­ 2pfsu 1 2pd 1 2pn , (33)

where n is an integer, and hence a must be an integer.
This is precisely the example presented in Ref. 10.

Thus, if the phase is given by a harmonic function and
if the intensity is circularly symmetric, then the only
solution of the uniform Neuman problem for the
transport-of-intensity equation is that given in Ref. 10.
Furthermore, we see that there are many solutions that
do not differ from each other by simply 2p (or any other
constant), and so these solutions do not simply represent
a trivial, nonobservable phase difference.

The above phase ambiguity relates to the nature of the
phase rather than to a particular method of its recon-
struction. Note that

Lfm ­ 0, ≠nfmjG ­ 0 , (34)

where fm is given in Eq. (28). The important point is
that this result does not contradict the uniqueness of
the solution to the Neuman problem (24) above, since
I sr ­ 0d ­ 0. Note that by the uniqueness theorems of
Subsection 3.A, if we were to modify the intensity dis-
tribution so as to remove artificially the zero from the
wave field, there would be only one valid solution of the
transport-of-intensity equation for the phase. Thus it is
the presence of intensity zeros that leads to the plethora
of solutions for the phase in the example of Ref. 10.

C. Physical Picture
To examine this phase nonuniqueness from a more physi-
cal perspective, consider the two solutions, f1 and f2, of
Eq. (18). Then we must have

=r ? hI sr, 0df=f1sr, 0d 2 =f2sr, 0dgj ­ 0 . (35)

If the solution of Eq. (34) is nontrivial, we can find a vector
field A for which

I sr, 0d=f1sr, 0d ­ I sr, 0d=f2sr, 0d 1 = 3 Asrd . (36)

Note that = 3 appearing in this equation is the three-
dimensional curl, whereas =r? is the two-dimensional di-
vergence. Hence we can find A of the form

Asr, zd ­ Asrdk . (37)

That is, A points in the z direction. In the example of
Ref. 10,

Asrd ­ m
Z `

r

I std
t

dt . (38)

Since the difference in the direction vectors is propor-
tional to the curl of another vector, this difference vector
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Fig. 3. Identical intensity distributions that can be produced by
two fields if the difference in their direction vectors forms closed
loops in a plane perpendicular to the optic axis.

forms closed loops in the sx, yd plane. This is analogous
to the observation that magnetic-field lines always form
closed loops and corresponds to the optical energy flowing
in loops in the plane perpendicular to the optic axis (see
Fig. 3). In the example of Ref. 10 the difference in the
fields can be considered to be produced by energy flowing
azimuthally around the optic axis; the phase velocity vec-
tor of the wave maps out a helix around the optical axis.
Fields displaying this behavior have been discussed in
other contexts and are known as optical vortices17 or
screw dislocations.18 Physical effects of these phenom-
ena have been observed in the form of angular momentum
transferred to particles in experiments involving the op-
tical trapping of particles in donut modes.19 It has also
been argued that it would not be possible to construct a
smooth flexible mirror able to smooth the phase of a wave
field containing a screw dislocation.20

One could imagine that there are an infinite number of
closed loops possible for the phase velocity vector to trace
in the plane perpendicular to the optical axis. In all the
cases, however, there must be a phase singularity at the
center of the loop, and this is possible only if the intensity
is zero at this point.

4. CONCLUSIONS
In this paper we have used the generalized radiance
function to obtain a simple derivation and physical pic-
ture for the transport-of-intensity equation first given by
Teague.1,2

We have shown that (1) it is impossible to reconstruct in
a unique way incoherent wave fields from intensity mea-
surements alone and (2) although uniqueness theorems
exist for the solution to the transport-of-intensity equa-
tion for the phase, zeros in the intensity distribution mean
that, in general, these theorems are not valid.

We have used the examples of Ref. 10 as a case in which
distinct wave fields with distinct phases given by Eq. (28)
have identical three-dimensional intensity distributions.
These wave fields, therefore, cannot be distinguished by
intensity measurements alone. This ambiguity in phase
is caused by the presence of the zeros in the intensity
distributions, which act as branching points for the phase,
and the resulting fields may have very different relative
phase distributions.
In other cases in which V is simply connected and
I is strictly positive, however, the phase function found
with the transport-of-intensity equation will be unique
and single valued. In applications in adaptive optics it
is quite conceivable that these conditions should be met,
and efficient algorithms for the solution of Eqs. (23) and
(24) under this assumption are currently being explored.
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